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Type Feature Eigen-
values 

Eigenvectors Deduction 

Symmetric 𝑆𝑇 = 𝑆 = 𝑄Λ𝑄𝑇

= 𝑄Λ𝑄−1	
ℝ Orthogonal 𝑥𝑖𝑇𝑥𝑗 = 0 ℝ eigenvalues: 𝑆𝑣 = 𝜆𝑣 ⇔ 𝜆⟨𝑣, 𝑣⟩ = ⟨𝜆𝑣, 𝑣⟩ = ⟨𝑆𝑣, 𝑣⟩ = 𝑣𝑇𝑆𝑇𝑣 = 𝑣𝑇𝜆𝑣 = ⟨𝑣, 𝜆𝑣⟩ =

𝜆⟨̅𝑣, 𝑣⟩⟺ 𝝀 = �̅�⟺ 𝝀 ∈ ℝ 
Orthogonal eigenvectors:𝑆𝑥 = 𝜆1𝑥⋀𝑆𝑦 = 𝜆2𝑦⋀𝜆1 ≠ 𝜆2 ⟺𝜆1⟨𝑥, 𝑦⟩ = ⟨𝜆1𝑥, 𝑦⟩ =
𝑥𝑇𝑆𝑇𝑦 = 𝑥𝑇𝜆2𝑦 = 𝜆2⟨𝑥, 𝑦⟩ ⇔ 𝑥𝑇𝑦 = 0 

Orthogonal 
(Unitary) 
  

𝑄𝑇 = 𝑄−1(𝑄3𝑇 = 𝑄−1) 
  

|𝜆| = 1 Orthogonal 𝑥𝑖3 𝑇𝑥𝑗 = 0 If 𝑆 is unitary, then the length of its eigenvalues are 1.  
Conversely, if S has n orthonormal eigenvectors 
𝑒𝑖 whose eigenvalues are all of length 1, then 𝑆 is unitary. 
If 𝑣 = ∑ 𝑐𝑖𝑒𝑖

𝑛
𝑖=1   and 𝑆𝑣 = 𝜆𝑣 , then ‖𝑣‖2 = ⟨𝑣, 𝑣⟩ = ∑ 𝑐𝑖2

𝑛
𝑖=1 , ‖𝑆𝑣‖2 = ⟨𝑆𝑣, 𝑆𝑣⟩ =

∑ (𝑐𝑖𝜆𝑖)
2𝑛

𝑖=1 = ∑ (𝑐𝑖)
2𝑛

𝑖=1 = ‖𝑣‖2, the length remains after transformation. 

Skew-
symmetric 

𝐴𝑇 = −𝐴	 ℂ\ℝ Orthogonal 𝑥𝑖3 𝑇𝑥𝑗 = 0 ℂ\ℝ eigenvalues: 𝑆𝑣 = 𝜆𝑣 ⇔ 𝜆⟨𝑣, 𝑣⟩ = ⟨𝜆𝑣, 𝑣⟩ = ⟨𝑆𝑣, 𝑣⟩ = 𝑣𝑇𝑆𝑇𝑣 = −𝑣𝑇𝜆𝑣 = ⟨𝑣, 𝜆𝑣⟩ =
−𝜆⟨̅𝑣, 𝑣⟩⟺ 𝝀 = −�̅�⟺ 𝝀 ∈ ℂ\ℝ 

Complex 
Hermitian 

𝑆�̅� = 𝑆	 ℝ Orthogonal 𝑥𝑖3 𝑇𝑥𝑗 = 0 Complex Symmetric Matrix. 

Positive 
Definite 

(i) 𝑝𝑖𝑣𝑜𝑡𝑠 > 0 
(ii) 
𝑛 𝑢𝑝𝑝𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡𝑠 >
0 
(iii) 𝜆 > 0 
(iv) 𝑥𝑇𝑆𝑥 > 0(𝑥 ≠ 0) 
(v) 𝑆 = 𝐴𝑇𝐴, det𝐴 ≠ 0 

ℝ+ Orthogonal 𝑆𝑇 = 𝑆 
(iv) is the basic definition (energy test) 
(iv)⇒ (iii) Use Vice Proof,∃𝜆 ≤ 0,  𝑆𝑣 = 𝜆𝑣 ⇒ 𝑣𝑇𝑆𝑣 = 𝜆𝑣𝑇𝑣 = 𝜆‖𝑣‖2 ≤ 0!  and (iii) ⇒

(iv) 𝜆𝑖 > 0,  𝑆 = 𝑄Λ𝑄𝑇 ;𝑥𝑇𝑆𝑥 = 𝑥𝑇𝑄Λ(𝑥𝑇𝑄)𝑇 = 𝑥′𝑇Λ𝑥′ = ∑ 𝜆𝑖𝑥𝑖2
𝑛
𝑖=1 > 0 

(i)⇔(iii) follows from Sylvester's law of Inertia. 
(iii)⇔(iv) Mathematical induction 

(iv)⇒ (v) 𝑆 = 𝑄Λ𝑄𝑇 = 𝑄√Λ√Λ𝑄𝑇 = 𝑄√Λ(𝑄√Λ)
𝑇
 

(v)⇒ (iv) 𝑆 = 𝐴𝑇𝐴,  𝑥𝑇𝑆𝑥 = 𝑥𝑇𝐴𝑇𝐴𝑥 = ‖𝐴𝑥‖2 > 0(det𝐴 ≠ 0) 

Positive Semi-
definite 

(i) 𝑝𝑖𝑣𝑜𝑡𝑠 ≥ 0 ℝ+ ∪ {0} Orthogonal Notice the restriction is deleted. 



(ii) 
𝑛 𝑢𝑝𝑝𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡𝑠 ≥
0 
(iii) 𝜆 ≥ 0 
(iv) 𝑥𝑇𝑆𝑥 ≥ 0(𝑥 ≠ 0) 
(v) 𝑆 = 𝐴𝑇𝐴 

Negative 
definite 

(i) 𝑝𝑖𝑣𝑜𝑡𝑠 ≤ 0 
(ii) even upper 
determinants >
𝟎,  Odd upper 
determinants < 0 
(iii) 𝜆 ≤ 0 
(iv) 𝑥𝑇𝑆𝑥 ≤ 0(𝑥 ≠ 0) 
(v) 𝑆 = −𝐴𝑇𝐴 

ℝ− ∪ {0} Orthogonal For (ii), 𝐴 is Negative definite, means −𝐴 is positive  definite!  Minor of −
A is greater than 0, then when it comes to even −
rank, it′s positive for A;  when it is odd − rank, it′s negative for A! (−1)𝑛 

Markov 𝑚𝑖𝑗 > 0,∑𝑚𝑖𝑗

𝑛

𝑖=1
= 1	

𝜆𝑚𝑎𝑥 = 1 Steady state 𝑥 > 0 Lemma 
𝑀𝑘 is also a Markov matrix. The first property is obvious. Then the second property,𝑢1 =
𝑀𝑢0,  𝑢0 ≥ 0 𝑎𝑛𝑑 𝑡h𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑢0 𝑖𝑠 1, use column formula, 𝑢1′ 𝑠 𝑠𝑢𝑚 𝑖𝑠 𝑎𝑙𝑠𝑜 1. Then 𝑀𝑘 
is also a Markov matrix. 
Pf  If ∃|𝜆| > 1, then 𝑀𝑘 will blow up, doesn't fit the property(sum is 1).(10.3) 

Similar 𝐴 = 𝐵𝐶𝐵−1	 𝜆(𝐴) = 𝜆(𝐶) 
(if and only 
if) 

𝐵𝑣(𝐶)	 𝐶𝑣 = 𝜆𝑣 ⇒ 𝐵𝐶𝑣 = 𝜆𝐵𝑣 ⇒ 𝐴(𝐵𝑣) = 𝜆(𝐵𝑣) 
Transitive: 𝐶 = 𝑋𝐸𝑋−1 ⇒ 𝐴 = 𝑋 ′𝐸𝑋 ′−1 

Projection 𝑃 = 𝑃2 = 𝑃𝑇 	 1 
0 

Column space 
Null space 

Projection on the column space stays the same. 
  

Plane Rotation 𝑄 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)	 𝑒−𝑖𝜃 
𝑒𝑖𝜃	

(1, 𝑖) 
(1,−𝑖)	

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)(1𝑖 )
= (cos 𝜃 − 𝑖 sin 𝜃

sin 𝜃 + 𝑖 cos 𝜃
) = ( 𝑒

−𝑖𝜃

𝑖𝑒−𝑖𝜃
) = 𝑒−𝑖𝜃(1𝑖 )

 

Reflection 𝑅 = 𝐼 − 2𝑢𝑢𝑇(‖𝑢‖ = 1)	 −1 
1 
⋮ 
1	

𝑢 
  
Whole plane 𝑢⊥ 

(𝐼 − 2𝑢𝑢𝑇)𝑢 = 𝑢 − 2𝑢 = −𝑢  
 

𝑣𝑇𝑢 = 0 ⇒ (𝐼 − 2𝑢𝑢𝑇)𝑣 = 𝑣 



Rank One 𝑢𝑣𝑇 	 𝑣𝑇𝑢 
0 
⋮ 
0	

𝑢 
  
Whole plane 𝑣⊥ 

𝑢𝑣𝑇𝑢 = 𝑢(𝑣𝑇𝑢) = (𝑣𝑇𝑢)𝑢  
  
𝑤𝑇𝑣 = 0 ⇒ 𝑢𝑣𝑇𝑤 = 𝑢(𝑣𝑇𝑤) = 0  

Inverse 𝐴−1	 1
𝜆(𝐴)

	 𝑣(𝐴)	 𝐴𝑣 = 𝜆𝑣 ⇒ 1
𝜆 𝑣 = 𝐴−1𝑣 

Shift 𝐴 + 𝑐𝐼	 𝜆(𝐴) + 𝑐	 𝑣(𝐴)	 𝐴𝑣 = 𝜆𝑣⋀𝑐𝐼𝑣 = 𝑐𝑣 ⇒ (𝐴 + 𝑐𝐼)𝑣 = (𝜆 + 𝑐)𝑣 

Stable Powers 𝐴𝑛 → 0(𝑛 → ∞)	 |𝜆| < 1	 ∀	 𝐴 = 𝑋𝛬𝑋−1 ⇒ 𝐴𝑛 = 𝑋𝛬𝑛𝑋−1(𝜆𝑛 → 0,𝑛 → ∞) 
When not diagonalizable, use Perturbation 

Stable 
Exponential 

𝑒𝐴𝑡 → 0(𝑡 → ∞)	 Re 𝜆 < 0	 ∀	 𝐴 = 𝑋𝛬𝑋−1 ⇒ 𝑒𝐴𝑡 = 𝑋𝑒Λ𝑡𝑋−1(𝜆𝑡 → 0, 𝑡 → ∞) 
When not diagonalizable, use Perturbation 

Cyclic 
Permutation 

𝑃𝑖,𝑖+1 = 1,  𝑃𝑛1 = 1 

𝑃3 = (
 1  
  1
1   

)	

𝜆𝑘 = 𝑒
2𝜋𝑖𝑘
𝑛

= roots of 1	

𝑥𝑘 = (1, 𝜆𝑘, … , 𝜆𝑘
𝑛−1) Eigenvalues are roots of 1 det(𝑃 − 𝜆𝐼) = 0 ⟺ (−𝜆)𝑛 + (−1)𝑛−1 = 0 ⟺𝜆𝑛 = 1 

  

Circulant 𝑐0𝐼 + 𝑐1𝑃 +⋯	 𝜆𝑘
= 𝑐0
+ 𝑐1𝑒

2𝜋𝑖𝑘
𝑛 	

𝑥𝑘 = (1, 𝜆𝑘, … , 𝜆𝑘
𝑛−1) FFT (Fast Fourier Transform) 

Tridiagonal −1,2,−1 on diagonals 𝜆𝑘
= 2

− 2 cos 𝑘𝜋
𝑛 + 1	

𝑥𝑘
= (sin 𝑘𝜋

𝑛 + 1 , sin 2𝑘𝜋
𝑛 + 1 , … ) 

By guessing and verifying 

Diagonalizabl
e 

𝐴 = 𝑋𝛬𝑋−1 Diagonal 
of 𝛬 

Columns of 𝑋 are 
independent 

Diagonalizable condition:  
𝑨 has 𝒏 independent eigenvectors. (if and only if) 
Geometric Multiplicity=Algebraic Multiplicity 
GM=AM 
Lemma If 𝐴 has 𝑛 different eigenvalues, then it has 𝑛 independent eigenvectors. 
If not, we can select the minimal linearly dependent eigenvectors. We can 
assume that 𝑣𝑘 = ∑ 𝑐𝑖𝑣𝑖

𝑘−1
𝑖=1 , where 𝑐𝑖 ≠ 0. Then 𝐴𝑣𝑘 = 𝜆𝑘𝑣𝑘 =

∑ 𝜆𝑘𝑐𝑖𝑣𝑖
𝑘−1
𝑖=1  and 𝐴𝑣𝑘 = 𝐴(∑ 𝑐𝑖𝑣𝑖

𝑘−1
𝑖=1 ) = ∑ 𝜆𝑖𝑐𝑖𝑣𝑖

𝑘−1
𝑖=1 , where 𝑣𝑖(𝑖 = 1,2, … , 𝑘 − 1) are 



linearly independent. And the same vector has two different forms based on 
the same basis, which is impossible. 

Schur 𝐴 = 𝑄𝑇𝑄−1, T is 
triangular 

Diagonal 
of 𝑇 

Columns of 𝑄, 𝑖𝑓 𝐴𝑇𝐴 =
𝐴𝐴𝑇 

*Schur's Triangularization 

Frobenius 
companion 

𝐷𝑖,𝑖+1 = 1,  𝐷𝑛𝑗 = 𝑎𝑗−1	 𝜆1, … , 𝜆𝑛 
are known 

𝑥𝑘 = (1, 𝜆𝑘, … , 𝜆𝑘
𝑛−1) Differential Equation 

𝑢𝑘+𝑛 = 𝑎𝑛−1𝑢𝑘+𝑛−1 +⋯+ 𝑎1𝑢𝑘+1 + 𝑎0𝑢𝑘 with initial condition 𝑢0,𝑢1, … ,𝑢𝑛−1 are 
known. 

𝑣𝑘 = 𝐷𝑘𝑣0 = 𝐷𝑘 (
𝑢0
⋮
𝑢𝑛−1

) ,  𝐷𝑘 = 𝑋Λ𝑘𝑋−1 

And output 𝑢𝑘+𝑛−1. Use the method of standing-by coefficients. And from the 
diagonalization, we can know that the power of the eigenvalue shares the 
same value k. 

Congruent  𝐴 = 𝐵𝐶𝐵𝑇 , B is 
invertible 

#(positive, 
zero, 
negative) 
index is 
equal 

  Sylvester's law of Inertia 
If and only if positive, negative, zero index for 𝐴 and 𝐶 are equal.  
The proof* 

Normal 𝑁3𝑇𝑁 = 𝑁𝑁3𝑇 ,  𝑁
= 𝑄Λ𝑄3𝑇 	

|𝜆| = 1 Orthonormal vectors in 
𝑄 

Proof 1 (i)𝑁 = 𝑄𝑇𝑄∗, find 𝑇∗𝑇 = 𝑇𝑇∗ 

(ii)𝑇 = (𝑎 𝑏
 𝑑), 𝑏=0 

(iii)2→ 𝑛 
Proof 2 𝑈 = 𝑇𝑇∗,𝑉 = 𝑇∗𝑇,  𝑈(1,1) = 𝑉(1,1) 

𝑈(1,1) = ∑𝑇(1, 𝑗)𝑇∗(𝑗, 1) =
𝑗

∑|𝑇(1, 𝑗)|2
𝑗

 

𝑉(1,1) = ∑𝑇∗(1, 𝑗)𝑇(𝑗, 1) =
𝑗

∑|𝑇(𝑗, 1)|2
𝑗

= |𝑇(1,1)|2 

∑|𝑇(1, 𝑗)|2
𝑛

𝑗=2
= 0 ⇔ 𝑇(1, 𝑗) = 0(𝑗 ≥ 2) 

The same for other rows. Then T is diagonal. 

*Jordan         



*SVD         

  
1. 𝐴 and 𝐵 are diagonalizable, then 𝐴𝐵 = 𝐵𝐴⟺ 𝐴 and 𝐵 share all 𝑛 eigenvectors. 
2. 𝐴𝐵 = 𝐵𝐴 ⇒ 𝐴 and 𝐵 share at least 1 eigenvector.(not necessarily diagonalizable) 
3. 𝑓(𝐴) = 𝑋𝑓(𝛬)𝑋−1 
4. (Cayley-Hamilton Theorem)𝑝𝐴(𝐴) = 0  

  
 


