Eigenvalues and Eignvectors

2019年1月1日 12:50 Log Creative

Туре	Feature	Eigen- values	Eigenvectors	Deduction
Symmetric	$S^{T} = S = Q\Lambda Q^{T}$ $= Q\Lambda Q^{-1}$	R	Orthogonal $x_i^T x_j = 0$	$ \begin{array}{l} \mathbb{R} \text{eigenvalues:} Sv = \lambda v \Leftrightarrow \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Sv, v \rangle = v^T S^T v = v^T \lambda v = \langle v, \lambda v \rangle = \\ \bar{\lambda} \langle v, v \rangle \Longleftrightarrow \lambda = \bar{\lambda} \Longleftrightarrow \lambda \in \mathbb{R} \\ \text{Orthogonal eigenvectors:} Sx = \lambda_1 x \bigwedge Sy = \lambda_2 y \bigwedge \lambda_1 \neq \lambda_2 \Longleftrightarrow \lambda_1 \langle x, y \rangle = \langle \lambda_1 x, y \rangle = \\ x^T S^T y = x^T \lambda_2 y = \lambda_2 \langle x, y \rangle \Leftrightarrow x^T y = 0 \end{array} $
Orthogonal (Unitary)	$Q^T = Q^{-1} (\bar{Q}^T = Q^{-1})$	$ \lambda = 1$	Orthogonal $\bar{x_i}^T x_j = 0$	If <i>S</i> is unitary, then the length of its eigenvalues are 1. Conversely, if S has n orthonormal eigenvectors e_i whose eigenvalues are all of length 1, then <i>S</i> is unitary. If $v = \sum_{i=1}^{n} c_i e_i$ and $Sv = \lambda v$, then $\ v\ ^2 = \langle v, v \rangle = \sum_{i=1}^{n} c_i^2$, $\ Sv\ ^2 = \langle Sv, Sv \rangle = \sum_{i=1}^{n} (c_i \lambda_i)^2 = \sum_{i=1}^{n} (c_i)^2 = \ v\ ^2$, the length remains after transformation.
Skew- symmetric	$A^T = -A$	$\mathbb{C} \setminus \mathbb{R}$	Orthogonal $\bar{x_i}^T x_j = 0$	$\mathbb{C} \setminus \mathbb{R} \text{ eigenvalues: } Sv = \lambda v \Leftrightarrow \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Sv, v \rangle = v^T S^T v = -v^T \lambda v = \langle v, \lambda v \rangle = -\bar{\lambda} \langle v, v \rangle \iff \lambda = -\bar{\lambda} \iff \lambda \in \mathbb{C} \setminus \mathbb{R}$
Complex Hermitian	$\bar{S}^T = S$	R	Orthogonal $\bar{x_i}^T x_j = 0$	Complex Symmetric Matrix.
Positive Definite	(i) $pivots > 0$ (ii) n upper determinants > 0 (iii) $\lambda > 0$ (iv) $x^T S x > 0 (x \neq 0)$ (v) $S = A^T A$, $\det A \neq 0$	R+	Orthogonal	$S^{T} = S$ (iv) is the basic definition (energy test) (iv) \Rightarrow (iii) Use Vice Proof, $\exists \lambda \leq 0$, $Sv = \lambda v \Rightarrow v^{T}Sv = \lambda v^{T}v = \lambda \ v\ ^{2} \leq 0!$ and (iii) \Rightarrow (iv) $\lambda_{i} > 0$, $S = Q\Lambda Q^{T}$; $x^{T}Sx = x^{T}Q\Lambda (x^{T}Q)^{T} = x'^{T}\Lambda x' = \sum_{i=1}^{n} \lambda_{i}x_{i}^{2} > 0$ (i) \Leftrightarrow (iii) follows from Sylvester's law of Inertia . (iii) \Leftrightarrow (iv) Mathematical induction (iv) \Rightarrow (v) $S = Q\Lambda Q^{T} = Q\sqrt{\Lambda}\sqrt{\Lambda}Q^{T} = Q\sqrt{\Lambda}(Q\sqrt{\Lambda})^{T}$ (v) \Rightarrow (iv) $S = A^{T}A$, $x^{T}Sx = x^{T}A^{T}Ax = Ax ^{2} > 0(\det A \neq 0)$
Positive Semi- definite	(i) $pivots \ge 0$	$\mathbb{R}^+ \cup \{0\}$	Orthogonal	Notice the restriction is deleted.

	(ii) <i>n</i> upper determinants \geq 0 (iii) $\lambda \geq 0$ (iv) $x^T S x \geq 0 (x \neq 0)$ (v) $S = A^T A$			
Negative definite	(i) $pivots \le 0$ (ii) even upper determinants > 0, Odd upper determinants < 0 (iii) $\lambda \le 0$ (iv) $x^TSx \le 0 (x \ne 0)$ (v) $S = -A^TA$	ℝ⁻∪{0}	Orthogonal	For (ii), A is Negative definite, means $-A$ is positive definite! Minor of $-A$ is greater than 0, then when it comes to even $-$ rank, it's positive for A; when it is odd $-$ rank, it's negative for A! $(-1)^n$
Markov	$m_{ij} > 0, \sum_{i=1}^{n} m_{ij} = 1$	$\lambda_{max} = 1$	Steady state $x > 0$	Lemma M^k is also a Markov matrix. The first property is obvious. Then the second property, $u_1 = Mu_0$, $u_0 \ge 0$ and the sum of u_0 is 1, use column formula, u'_1s sum is also 1. Then M^k is also a Markov matrix. Pf If $\exists \lambda > 1$, then M^k will blow up, doesn't fit the property(sum is 1).(10.3)
Similar	$A = BCB^{-1}$	$\lambda(A) = \lambda(C)$ (if and only if)	Bv(C)	$Cv = \lambda v \Rightarrow BCv = \lambda Bv \Rightarrow A(Bv) = \lambda(Bv)$ Transitive: $C = XEX^{-1} \Rightarrow A = X'EX'^{-1}$
Projection	$P = P^2 = P^T$	1 0	Column space Null space	Projection on the column space stays the same.
Plane Rotation	$Q = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$	$e^{-i heta} e^{i heta}$	(1,i) $(1,-i)$	$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1\\ i \end{pmatrix} = \begin{pmatrix} \cos\theta - i\sin\theta\\ \sin\theta + i\cos\theta \end{pmatrix} = \begin{pmatrix} e^{-i\theta}\\ ie^{-i\theta} \end{pmatrix} = e^{-i\theta} \begin{pmatrix} 1\\ i \end{pmatrix}$
Reflection	$R = I - 2uu^T (u = 1)$	-1 1 : 1	u Whole plane u^{\perp}	$(I - 2uu^T)u = u - 2u = -u$ $v^T u = 0 \Rightarrow (I - 2uu^T)v = v$

Rank One	uv^T	$v^T u$	u	$uv^T u = u(v^T u) = (v^T u)u$
			Whole plane v^{\perp}	$w^T v = 0 \Rightarrow u v^T w = u (v^T w) = 0$
Inverse	A^{-1}	$\frac{1}{\lambda(A)}$	<i>v</i> (<i>A</i>)	$Av = \lambda v \Rightarrow \frac{1}{\lambda}v = A^{-1}v$
Shift	A + cI	$\lambda(A) + c$	v(A)	$Av = \lambda v \bigwedge cIv = cv \Rightarrow (A + cI)v = (\lambda + c)v$
Stable Powers	$A^n o 0 (n o \infty)$	$ \lambda < 1$	A	$A = XAX^{-1} \Rightarrow A^n = XA^nX^{-1}(\lambda^n \to 0, n \to \infty)$ When not diagonalizable, use Perturbation
Stable Exponential	$e^{At} o 0(t o \infty)$	Re $\lambda < 0$	A	$A = XAX^{-1} \Rightarrow e^{At} = Xe^{At}X^{-1}(\lambda^t \to 0, t \to \infty)$ When not diagonalizable, use Perturbation
Cyclic Permutation	$P_{i,i+1} = 1, P_{n1} = 1$ $P_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\lambda_k = e^{\frac{2\pi ik}{n}}$ = roots of 1	$x_k = (1, \lambda_k, \dots, \lambda_k^{n-1})$	Eigenvalues are roots of 1 det $(P - \lambda I) = 0 \iff (-\lambda)^n + (-1)^{n-1} = 0 \iff \lambda^n = 1$
Circulant	$c_0I + c_1P + \cdots$	$ \begin{vmatrix} \lambda_k \\ = c_0 \\ + c_1 e^{\frac{2\pi i k}{n}} \end{vmatrix} $	$x_k = (1, \lambda_k, \dots, \lambda_k^{n-1})$	FFT (Fast Fourier Transform)
Tridiagonal	-1,2, -1 on diagonals	$\begin{vmatrix} \lambda_k \\ = 2 \\ -2\cos\frac{k\pi}{n+1} \end{vmatrix}$	$ = \left(\sin\frac{k\pi}{n+1}, \sin\frac{2k\pi}{n+1}, \dots\right) $	By guessing and verifying
Diagonalizabl e	$A = XAX^{-1}$	Diagonal of A	Columns of X are independent	Diagonalizable condition: A has n independent eigenvectors. (if and only if) Geometric Multiplicity=Algebraic Multiplicity GM=AM Lemma If A has n different eigenvalues, then it has n independent eigenvectors. If not, we can select the minimal linearly dependent eigenvectors. We can assume that $v_k = \sum_{i=1}^{k-1} c_i v_i$, where $c_i \neq 0$. Then $Av_k = \lambda_k v_k =$ $\sum_{i=1}^{k-1} \lambda_k c_i v_i$ and $Av_k = A(\sum_{i=1}^{k-1} c_i v_i) = \sum_{i=1}^{k-1} \lambda_i c_i v_i$, where $v_i (i = 1, 2,, k - 1)$ are

				linearly independent. And the same vector has two different forms based on the same basis, which is impossible.
Schur	$A = QTQ^{-1}$, <i>T</i> is triangular	Diagonal of <i>T</i>	Columns of Q , if $A^T A = AA^T$	*Schur's Triangularization
Frobenius companion	$D_{i,i+1} = 1, D_{nj} = a_{j-1}$	$\lambda_1, \dots, \lambda_n$ are known	$x_k = (1, \lambda_k, \dots, \lambda_k^{n-1})$	Differential Equation $u_{k+n} = a_{n-1}u_{k+n-1} + \dots + a_1u_{k+1} + a_0u_k$ with initial condition u_0, u_1, \dots, u_{n-1} are known. $v_k = D^k v_0 = D^k \begin{pmatrix} u_0 \\ \vdots \\ u_{n-1} \end{pmatrix}, D^k = X\Lambda^k X^{-1}$ And output u_{k+n-1} . Use the method of standing-by coefficients. And from the diagonalization, we can know that the power of the eigenvalue shares the same value k.
Congruent	$A = BCB^T$, B is invertible	#(positive, zero, negative) index is equal		Sylvester's law of Inertia If and only if positive, negative, zero index for <i>A</i> and <i>C</i> are equal. The proof*
Normal	$\overline{N}^T N = N \overline{N}^T, N$ $= Q \Lambda \overline{Q}^T$	$ \lambda = 1$	Orthonormal vectors in <i>Q</i>	Proof 1 (i) $N = QTQ^*$, find $T^*T = TT^*$ (ii) $T = \begin{pmatrix} a & b \\ & d \end{pmatrix}$, $b=0$ (iii) $2 \rightarrow n$ Proof 2 $U = TT^*$, $V = T^*T$, $U(1,1) = V(1,1)$ $U(1,1) = \sum_j T(1,j)T^*(j,1) = \sum_j T(1,j) ^2$ $V(1,1) = \sum_j T^*(1,j)T(j,1) = \sum_j T(j,1) ^2 = T(1,1) ^2$ $\sum_{j=2}^n T(1,j) ^2 = 0 \Leftrightarrow T(1,j) = 0 (j \ge 2)$ The same for other rows. Then T is diagonal.
*Jordan				

*SVD		

- 1. *A* and *B* are diagonalizable, then $AB = BA \iff A$ and *B* share all *n* eigenvectors.
- 2. $AB = BA \Rightarrow A$ and B share at least 1 eigenvector.(not necessarily diagonalizable)
- 3. $f(A) = X f(A) X^{-1}$
- 4. (Cayley-Hamilton Theorem) $p_A(A) = 0$