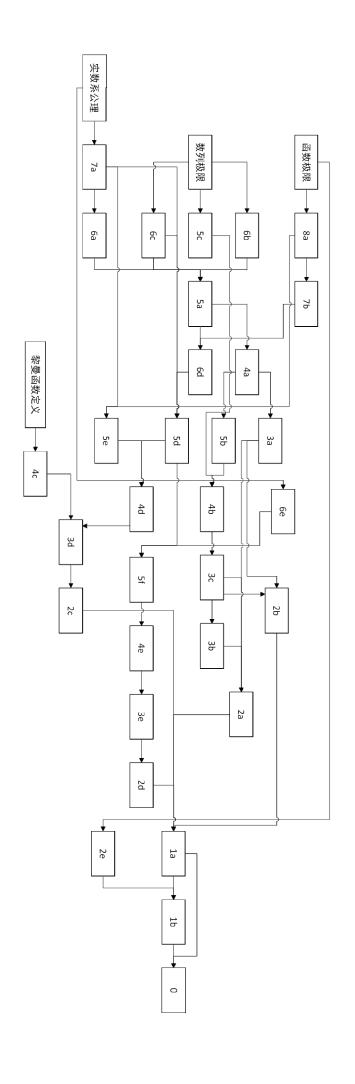
你真的会推牛顿-莱布尼茨公式么?

2019年1月8日 9:10 Log Creative

定理 0	一 带积分余项的泰勒展开
定理 1a	牛顿—莱布尼茨公式
定理 1b	分部积分法
推论 2b	闭区间有界有有限个间断点函数黎曼可积
推论 2a	闭区间连续函数必定可积
定理 2c	可积函数有原函数定理
引理 2d	同一函数原函数之间只能相差一个常数
定理 3a	Cantor 定理
定理 4a	Bolzano-Weistrass 定理
定理 5a	闭区间套定理
定理 6a	单调有界数列必收敛
定理 7a	确界存在定理
定理 6b	极限的加法原理
定理 6c	极限的夹逼性
定理 3b	黎曼可积的条件(存在分划振幅)
定理 3c	黎曼可积的条件(任意分划振幅)
定理 4b	柯西收敛准则(函数形式)
定理 5b	柯西收敛准则(数列形式)
定理 5c	Heine 定理
定理 3d	微分第一中值定理
定理 4c	积分保序性
定理 4d	闭区间连续函数的介值定理
定理 5d	闭区间连续函数的最值定理
定理 5e	闭区间连续函数的零点存在定理
定理 6d	闭区间连续函数的有界性定理
推论 7b	函数极限的局部有界性
推论 8a	函数极限的局部保序性
推论 3e	导函数恒零为常数函数推论
定理 4e	拉格朗日中值定理
定理 5f	罗尔中值定理
引理 6e	费马引理
推论 2e	函数积分的微分规则



定理 0 (带积分余项的泰勒展开) 设以a和x为端点的闭区间上的函数 $t \mapsto f(t)$ 有 n 阶连续导数。则

$$f(x) = \sum_{i=0}^{n-1} \frac{f^{(i)}(a)}{i!} (x - a)^i + r_n(a, x)$$

式中

$$r_n(a, x) = \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-t)^{n-1} dt$$

证明 0 根据牛顿-莱布尼茨公式[1a],有

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt = -\int_{a}^{x} f'(t)d(x-t)$$

下面根据分部积分法[1b],有

$$-\int_{a}^{x} f'(t)d(x-t) = -\left(f'(t)(x-t)\Big|_{a}^{x} - \int_{a}^{x} f''(t)(x-t)dt\right) = f'(a)(x-a) + \int_{a}^{x} f''(t)(x-t)dt$$

同样地,

$$\begin{split} \int_{a}^{x} f''(t)(x-t)dt &= -\int_{a}^{x} f''(t)(x-t)d(x-t) = -\frac{1}{2} \int_{a}^{x} f''(t)d(x-t)^{2} \\ &= -\frac{1}{2} \bigg(f''(t)(x-t)^{2} \big|_{a}^{x} - \int_{a}^{x} f^{(3)}(t)(x-t)^{2} dt \bigg) = \frac{1}{2} f''(a)(x-a)^{2} + \frac{1}{2} \int_{a}^{x} f^{(3)}(t)(x-t)^{2} dt = \cdots \end{split}$$

由数学归纳法原理,我们就完成了证明。

定理 1a (牛顿—莱布尼茨公式)如果 $f:[a,b]\to\mathbb{R}$ 是有界且仅有有限个间断点的函数(**或者是** $f\in C_{[a,b]}$),则 $f\in\mathcal{R}[a,b]$ 且

$$\int_{a}^{b} f(x)dx = \mathcal{F}(b) - \mathcal{F}(a)$$

其中 \mathcal{F} : $[a,b] \to \mathbb{R}$ 是f 在闭区间[a,b] 上的任一原函数。

证明 1a 如果 $f:[a,b] \to \mathbb{R}$ 是有界且仅有有限个间断点的函数,根据闭区间有界有有限个间断点函数 黎曼可积[2b],有 $f \in \mathcal{R}[a,b]$;

如果 $f \in C_{[a,b]}$,根据闭区间上连续函数必定可积[2a],有 $f \in \mathcal{R}[a,b]$ 。

f在[a,b]有原函数由闭区间有界有有限间断点函数有原函数定理[2c]保证。

而f同一函数原函数之间只能相差一个常数[2d],所以 $\mathcal{F}(x)$ 有下述形式:

$$\mathcal{F}(x) = \int_{0}^{x} f(t)dt + C, \ C \in \mathbb{R}$$

注意到 $\mathcal{F}(a) = C$,故

$$\mathcal{F}(x) = \int_{a}^{x} f(t)dt + \mathcal{F}(a)$$

特别地,

$$\mathcal{F}(b) - \mathcal{F}(a) = \int_{a}^{b} f(x) dx$$

证毕。

推论 2a (闭区间上连续函数必定可积) $f \in C_{[a,b]} \Rightarrow f \in \mathcal{R}[a,b]$

证明 2a [a,b]上等分分划为n份,分划长度为 $\frac{b-a}{n}$ 。根据 Cantor 定理[3a],有分划区间上的振幅 $\lim_{n\to\infty}\omega_i=0\Leftrightarrow \forall \epsilon>0, \exists N>0: \forall n>N, |\omega_i|<\epsilon$

则有

$$\sum_{i=1}^{n} \omega_{i} \Delta x < n \varepsilon \frac{b-a}{n} = (b-a)\varepsilon \to 0 (\varepsilon \to 0)$$

根据黎曼可积的条件(存在分划振幅)[3b],有此函数黎曼可积。

另证 2a 根据 Cantor 定理[3a],

$$\forall \epsilon > 0, \exists \delta > 0: \forall \Delta \subset [a, b](|\Delta| < \delta), \omega(f; \Delta) < \frac{\epsilon}{b - a}$$

于是对于任何分划P,只要其参数 $\lambda(P) < \delta$,就有

$$\sum_{i=1}^{n} \omega(f; \Delta) \Delta x_i < \frac{\epsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \epsilon$$

根据黎曼可积的条件(任意分划振幅)[3c],有此函数黎曼可积。

定理 3a (Cantor 定理) 在闭区间上连续的函数在此区间上一致连续。

证明 3a 用反证法。若 $f \in C_{[a,b]}$,但不是一致连续的,则

$$\begin{split} \exists \epsilon_0 > 0, \exists \big\{ x_n^{(1)} \big\}, \big\{ x_n^{(2)} \big\} \subseteq [a, b] \Big(\big| x_i^{(1)} - x_i^{(2)} \big| < \frac{1}{n} \Big) \\ \big| f \Big(x_i^{(1)} \Big) - f \Big(x_i^{(2)} \Big) \big| \ge \epsilon_0 \quad (*) \end{split}$$

由 Bolzano-Weistrass 定理[4a], $\{x_n^{(1)}\}$, $\{x_n^{(2)}\}$ 必有收敛子列,记为 $\{x_{n_k}^{(1)}\}$, $\{x_{n_k}^{(2)}\}$,且 $\lim_{k\to\infty}x_{n_k}^{(1)}=\xi$

考虑 $\{x_n^{(2)}\}$ 中对应子列,有

$$\lim_{k \to \infty} x_{n_k}^{(2)} = \lim_{k \to \infty} \left(x_{n_k}^{(2)} - x_{n_k}^{(1)} \right) + x_{n_k}^{(1)} = \lim_{k \to \infty} x_{n_k}^{(1)} = \xi$$

由于 $f \in C_{[a,b]}$,故

$$\lim_{k\to\infty} f\!\left(x_{n_k}^{(1)}\right) = f\!\left(\lim_{k\to\infty} x_{n_k}^{(1)}\right) = f\!\left(\lim_{k\to\infty} x_{n_k}^{(2)}\right) = \lim_{k\to\infty} f\!\left(x_{n_k}^{(2)}\right) = f(\xi)$$

这与(*)矛盾。证明完毕。

定理 4a (Bolzano-Weistrass 定理) 有界数列必有收敛子列。

证明 4a $\{x_n\} \subseteq [a_1,b_1]$,使用二分法选点,使得每个子区间有无穷多项,由闭区间套定理[5a],得

$$\exists \xi > 0: \xi = \lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k$$

由于每个子区间中有无穷多项,从每个子区间中选出一个指标递增的子列是能够实现的,即

$$x_{n_k} \subseteq [a_k, b_k]$$

则由夹逼定理得

$$\xi = \lim_{k \to \infty} x_{n_k}$$

证毕。

定理 5a (闭区间套定理) 闭区间套: $[a_{k+1},b_{k+1}]\subseteq [a_k,b_k]\bigwedge_{n\to\infty}\lim_{n\to\infty}(b_n-a_n)=0$,则

$$\exists ! \, \xi > 0 : \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n = \xi$$

证明 5a 由于 $a_1 \le \cdots \le a_{n-1} \le a_n \le b_n \le b_{n-1} \le \cdots \le b_1$,则由单调有界数列必收敛定理[6a],可得

$$\exists \xi > 0: \lim_{n \to \infty} a_n = \xi$$

而且由极限的加法原理[6b]可得

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} (b_n - a_n) + a_n = \xi$$

若另有实数ξ' ⊆ [a_k , b_k](k = 1,2,...) 则由极限的夹逼性[6c]可得

$$\xi' = \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n = \xi$$

即其是惟一的。证毕。

定理 6a (单调有界数列必收敛定理) $\{x_n\}$ 单调递增有上界,则

$$\exists \beta \in \mathbb{R}: \lim_{n \to \infty} x_n = \beta$$

证明 6a 由确界存在定理[7a]可知,有上界必有上确界 β 满足:

- (i) $x_n \leq \beta$
- (ii) $\forall \epsilon > 0, \exists n_0 > 0: x_{n_0} > \beta \epsilon$

取 $N = n_0, \forall n > N$:

$$\beta - \epsilon < x_{n_0} \le x_n \le \beta \Rightarrow |x_n - \beta| < \epsilon \Rightarrow \lim_{n \to \infty} x_n = \beta = \sup x_n$$

证明完毕。

定理 7a (确界存在定理) 非空有上界数集必有上确界; 非空有下界数 集必有下确界。(实数系连续性定理)

证明 7a 由序公理1~

$$(x \le y) \bigwedge (y \le x) \Rightarrow x = y$$

可知,如果一个数集有极大元

$$(a = \max X) := \forall x \in X \land x \le a$$

那么它只能有一个。我们现在只需要证明上确界的存在性。

设x ⊂ \mathbb{R} 是给定的子集,而 $Y = \{y \in \mathbb{R} | \forall x \in X (x \leq y)\}$

是上界构成的集合。且 $X \neq \emptyset$, $Y \neq \emptyset$.根据完备性**公理**, $\exists c \in \mathbb{R}$: $\forall x \in X \forall y \in Y (x \le c \le y)$.因此c 是 X 的上界,是 Y 的下界。故 $c \in Y$, $c = \min Y = \sup X$.

证明完毕! (Return:以公理结束)

定理 6b (极限的加法原理) \lim 是一个线性算子,即令 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$

$$\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha a + \beta b$$

证明 6b $\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \epsilon > 0, \exists N > 0, \forall n > N: |x_n - a| < \epsilon$

$$\lim_{n \to \infty} y_n = a \Leftrightarrow \forall \epsilon > 0, \exists N > 0, \forall n > N: |y_n - a| < \epsilon$$

$$|\alpha x_n + \beta y_n - (\alpha a + \beta b)| < |\alpha| |x_n - a| + |\beta| |y_n - b| < (|\alpha| + |\beta|) \epsilon$$

证明完毕! **(Return:以定义结束,***e – N*语言)

定理 6c (极限的夹逼性) 若三个数列 $\{x_n\},\{y_n\},\{z_n\}$ 从<u>某项</u>开始成立

$$x_n \le y_n \le z_n, \ n > N_0$$

且
$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$$
 则 $\lim_{n \to \infty} y_n = a$

证明 6c $\lim_{n \to \infty} x_n = a \Leftrightarrow \forall \epsilon > 0, \exists N_1 > 0, \forall n > N: |x_n - a| < \epsilon \Rightarrow a - \epsilon < x_n$

$$\lim_{n \to \infty} z_n = a \Leftrightarrow \forall \epsilon > 0, \exists N > 0, \forall n > N_2: |z_n - a| < \epsilon \Rightarrow z_n < a + \epsilon$$

$$N = \max\{N_0, N_1, N_2\}, n > N$$
:

$$a - \epsilon < x_n \le y_n \le z_n < a + \epsilon \Leftrightarrow |y_n - a| < \epsilon \Leftrightarrow \lim_{n \to \infty} y_n = a$$

证明完毕! (Return:以定义结束, $\epsilon - N$ 语言)

定理 3b [黎曼可积的条件(存在分划振幅)] 证明过于繁杂。此处略。这是下面定理的推论。

定理 3c [黎曼可积的条件(任意分划振幅)] 为使闭区间[a,b]上的有界函数 f在这个区间上可积,只要

$$\forall \epsilon > 0, \exists \delta > 0: \forall P[\lambda(P) < \delta] \left| \sum_{i=1}^{n} \omega(f; \Delta_i) \Delta x_i \right| < \epsilon$$

证明 3c 设P 区间[a,b] 的一个分划, \tilde{P} 是分划P 的开拓。则

$$\begin{split} |\sigma(f; \tilde{P}; \tilde{\xi}) - \sigma(f; P; \xi)| &= \left| \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} f(\xi_{ij}) \Delta x_{ij} - \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} \right| \\ &= \left| \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} f(\xi_{ij}) \Delta x_{ij} - \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} f(\xi_{i}) \Delta x_{ij} \right| = \left| \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} [f(\xi_{ij}) - f(\xi_{i})] \Delta x_{ij} \right| \\ &\leq \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} |f(\xi_{ij}) - f(\xi_{i})| \Delta x_{ij} \leq \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \omega(f; \Delta_{i}) \Delta x_{ij} = \sum_{i=1}^{n} \omega(f; \Delta_{i}) \Delta x_{i} < \varepsilon \end{split}$$

考察 (P',ξ') 和 $(P'',\xi'')(\lambda(P')<\delta,\lambda(P'')<\delta)$,令 $\tilde{P}=P'\cup P''$ 有

$$\begin{aligned} &|\sigma(f; \tilde{P}; \tilde{\xi}) - \sigma(f; P'; \xi')| < \varepsilon \\ &|\sigma(f; \tilde{P}; \tilde{\xi}) - \sigma(f; P''; \xi'')| < \varepsilon \\ \Rightarrow &|\sigma(f; P'; \xi') - \sigma(f; P''; \xi'')| < 2\varepsilon \end{aligned}$$

这样一来,根据柯西收敛准则[4b],积分和的极限

$$\lim_{\lambda(P)\to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

存在,即 $f \in \mathcal{R}[a,b]$ 。证毕。

定理 4b (柯西收敛准则,函数形式) $\lim_{x\to +\infty} f(x) = A \in \mathbb{R} \Leftrightarrow \forall \epsilon > 0, \exists X > 0: \forall x', x'' > X, |f(x') - f(x'')| < \epsilon$

证明 4b
$$\lim_{x\to +\infty} f(x) = A \in \mathbb{R} \Rightarrow \forall \epsilon > 0, \exists X > 0, \forall x', x'' > X: |f(x') - A| < \frac{\epsilon}{2}, |f(x'') - A| < \frac{\epsilon}{2} \Rightarrow |f(x') - f(x'')| = |[f(x') - A] - [f(x'') - A]| < |f(x') - A| + |f(x'') - A| < \epsilon$$

 $\forall \epsilon > 0, \exists X > 0, \forall x', x'' > X: |f(x') - f(x'')| < \epsilon \Rightarrow \forall \{x_n\} \subset (X, +\infty), |f(x_n) - f(x_m)| < \epsilon \Rightarrow \{f(x_n)\}$ 是 Cauchy 列,因而由数列的柯西收敛准则[5b],知其必定收敛。

再由 Heine 定理[5c],知道 $\lim_{x \to +\infty} f(x) = A \in \mathbb{R}$ 。证毕。

定理 5b (柯西收敛准则,数列形式) $\{x_n\}$ 收敛 $\Leftrightarrow \forall \epsilon > 0, \exists N > 0: \forall n, m > N, |x_n - x_m| < \epsilon$

证明 5b ⇒ 类似于[4b]。略

$$\begin{split} \forall \epsilon > 0, \exists N > 0, \forall n, m > N : |x_n - x_m| < \epsilon \Rightarrow \epsilon_0 = 1, \exists N_0 > 0, \forall n > N : |x_n - x_{N_0 + 1}| \\ < 1 \\ M = \max\{|x_1|, \dots, |x_{N_0}|, |x_{N_0 + 1}| + 1\} \Rightarrow |x_n| \leq M \end{split}$$

由 Bolzano-Weistrass 定理[4a]可知,其必有收敛子列:

$$\lim_{k\to\infty}x_{n_k}=\xi$$

 $\forall \epsilon > 0, \exists N > 0: \forall n > N, n_k$ 充分大,会有

$$|x_n - x_{n_k}| \sim |x_n - \xi| < \epsilon$$

即数列收敛。证毕。

定理 5c (Heine 定理) $\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \{x_n\} \Big(\lim_{n \to \infty} x_n = x_0 \bigwedge x_n \neq x_n \Big)$, f(x) = A (任意方式教活和方共同规则)

 x_0): $\lim_{n\to\infty} f(x_n) = A$ (任意方式趋近都有共同极限)

证明 5c $\lim_{x \to x_0} f(x) = A \Rightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x (0 < |x - x_0| < \delta): |f(x) - A| < \epsilon$ $\lim_{x \to x_0} x_n = x_0 \Leftrightarrow \exists N > 0, \forall n > N: 0 < |x - x_0| < \delta \Rightarrow |f(x_n) - A| < \epsilon$

另一方面用反证法。 $\lim_{x\to x_0}f(x)\neq A\Leftrightarrow \exists \epsilon_0>0, \forall \delta>0, \exists x(0<|x-x_0|<\delta): |f(x)-A|\geq \epsilon_0$

取 $\{\delta_i\}\left(\delta_i=\frac{1}{i}\right)$, $\exists x_i(0<|x_i-x_0|<\delta_i)$: $|f(x_i)-A|\geq \epsilon_0$

这个数列 $\{x_i\}$ 不以A为极限。矛盾!证毕。(Return:以定义结束, $\epsilon-N$ 语言)

推论 2b (闭区间有界有有限个间断点函数黎曼可积) 如果定义在闭区间[a,b]

上的有界函数 f 在该区间上最多除有限多个点是连续的,则 $f \in \mathcal{R}[a,b]$.

证明 2b 由于是有界函数,故其振幅 $\omega(f;[a,b]) \leq C < \infty$, $\forall \epsilon > 0, \delta_1 = \epsilon$,对每一个间断点做 $\delta_1 - 0$ 邻域,这样的区间共有k个。这些邻域的补集是有限个闭区间组成的,由 Cantor 定理[3a]可知,f 在其上一致连续。在这些连续区间上,一旦区间长小 gen 于 δ_2 ,振幅就小于 ϵ 。现在取 $\delta = \min\{\delta_1,\delta_2\}$.

设 P 是[a,b]上的任意一个分划($\lambda(P) < \delta$),则

$$\sum_{i=1}^{n} \omega(f; \Delta_{i}) \Delta x_{i} < \sum_{\substack{\text{包含间断点}}} \omega(f; \Delta_{i}) \Delta x_{i} + \sum_{\substack{\text{不包含间断点}}} \omega(f; \Delta_{i}) \Delta x_{i} < (Ck + b - a)\epsilon \to 0(\epsilon \to 0)$$

故由黎曼可积的条件(任意分划振幅)[3c]知,其可积。证毕。

定理 2c (可积函数有原函数定理)如果 $f \in \mathcal{R}[a,b]$,而f在某点 $x \in [a,b]$ 连续,则变上限积分

$$F(x) = \int_{a}^{x} f(t)dt$$

在这个点可导, 而且成立

$$F'(x) = f(x)$$

证明 2c 根据导数的定义

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\int_x^{x+h} f(t)dt}{h}$$

由积分第一中值定理[3d]得(或者是特殊情况——积分平均值),

 $\int_{y}^{x+h} f(t)dt = hf(\xi)$, ξ 在x与x + h之间

而f在x处连续,所以

$$\lim_{h\to 0} f(\xi) = f(x)$$

由此,F'(x) = f(x)。证毕。

定理 3d (积分第一中值定理)设 $f,g \in \mathcal{R}[a,b],g(x)$ 在[a,b] 上不变号,则存在 $\eta \in [m,M]$:

$$\int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} g(x)dx$$

其中 $m = \inf f(x), M = \sup f(x), x \in [a, b]$

特别地,若 $f \in C_{[a,b]}$,则

$$\exists \xi \in [a,b]: \int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x) dx$$

更特别地, $f \in C_{[a,b]}, g(x) \equiv 1$:

$$\exists \xi \in [a,b] : \int_a^b f(x)g(x)dx = f(\xi)(b-a)$$

证明 3d 因为g(x) 在[a,b] 上不变号,所以 WLOG(Without Loss Of Generality),

$$g(x) \ge 0, \ x \in [a, b]$$

 $\Rightarrow mg(x) \le f(x)g(x) \le Mg(x)$

由于积分的保序性[4c],就有

$$m \int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M \int_{a}^{b} g(x)dx$$

由于 $\int_a^b f(x)g(x)dx$ 和 $\int_a^b g(x)dx$ 是常数,必然

$$\exists \eta \in [m, M]: \int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} g(x)dx$$

特别地, $f \in C_{[a,b]}$,由闭区间上连续函数的介值定理[4d],下述必然

$$\exists \xi \in [a,b]: \int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x) dx$$

证毕。

定理 4c (积分保序性)设 $f,g \in \mathcal{R}[a,b], f(x) \ge g(x), x \in [a,b]$,则

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$$

证明 4c 这个式子等价于

$$\int_{a}^{b} [f(x) - g(x)]dx \ge 0$$

即证,对于函数 $h(x) \ge 0$:

$$\int_{a}^{b} h(x)dx \ge 0$$

由黎曼积分的定义

$$\int_{a}^{b} h(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta_{i} \ge 0$$

证毕。(Return: 定义 黎曼积分)

定理 4d (闭区间上连续函数的介值定理)若函数 $f \in C_{[a,b]}$,则它一定能够取到最大值 M与最小值m之间的任何值。

证明 4d 由最值定理[5d]可得,

$$\exists \xi, \eta \in [a, b]: f(\xi) = m, f(\eta) = M$$

不妨设 $\xi < \eta$,则对任意一个中间值 $C \in (m, M)$ 考察

$$\varphi(x) = f(x) - C$$

因为 $f \in C_{[\xi,\eta]}$, $\varphi(\xi) = f(\xi) - C < 0$, $\varphi(\eta) = f(\eta) - C > 0$,由于零点存在定理[5e],得 $\exists \zeta \in (\xi,\eta) : \varphi(\zeta) = 0 \Rightarrow f(\zeta) = C$

证毕。

定理 5d (闭区间上连续函数的最值定理)若函数 $f \in C_{[a,b]}$,则它一定在[a,b]取 到最大值和最小值,即

$$\exists \xi, \eta \in [a, b]: f(\xi) \le f(x) \le f(\eta), \ x \in [a, b]$$

证明 5d 由闭区间上连续函数有界性定理[6d]可得,值域集合 $R_f = \{f(x)|x\in[a,b]\}$ 是一个有界集。由确界存在定理[7a]知,其必有上确界与下确界,记

$$\alpha = \inf R_f$$
, $\beta = \sup R_f$
 $\alpha = \inf R_f \Leftrightarrow$

- (i) $\forall x \in [a, b], f(x) \ge \alpha$
- (ii) $\forall \epsilon > 0, \exists x \in [a, b]: f(x) < \alpha + \epsilon$

$$\Rightarrow \exists x_n \in [a, b]: \alpha \le f(x_n) < \alpha + \frac{1}{n}$$

由 Bolzano-Weistrass 定理[4a]可知,由于 x_n 是有界数列,故存在收敛子列

$$\lim_{k \to \infty} x_{n_k} = \xi \in [a, b]$$

而

$$\alpha \le f(x_{n_k}) < \alpha + \frac{1}{n_k}$$

当 $k \to \infty$ 时,由夹逼定理[6c]和函数的连续性可知,

$$f(\xi) = \alpha = \min R_f$$

同理, $\exists \eta \in [a,b]$: $f(\eta) = \beta = \max R_f$ 。 证毕。

定理 6d (闭区间上连续函数的有界性定理) $f \in C_{[a,b]} \Rightarrow f$ 在[a,b]上有界**证明 6d** 用反证法。f 在[a,b]

上无界,使用二分法构造闭区间套,是每个小闭区间 $[a_i,b_i] \subset [a,b]$ 上f都无界。根据闭区间套定理[5a]可得,

$$\exists ! \, \xi \in [a, b] : \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$$

由f 的连续性以及函数极限的局部有界性[7b]可知, $\exists \delta > 0, M > 0, \forall x \in O_{\delta}(\xi), |f(x)| \leq M$

而对于充分大的n ,会有 $[a_n,b_n]\subset O_\delta(\xi)$,也就意味着在此上有界,这与无界的假设是矛盾!

证毕。

推论 7b (函数极限的局部有界性) $\lim_{x\to x_0} f(x) = A \Rightarrow \exists \delta > 0: x \in O_{\delta}(x_0)$ 上f有界。

证明 7b 由函数极限的保序性[8a]可知,取 $m, M \in \mathbb{R}$: m < A < M,令 $g(x) \equiv m, h(x) \equiv M$ 有,

$$\exists \delta > 0 : x \in O_{\delta}(x_0) \setminus \{x_0\}, \ m < f(x) < M$$

证毕。

推论 8a (函数极限的局部保序性) $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, $A > B \Rightarrow \exists \delta > 0$, $x \in O_{\delta}(x_0) \setminus \{x_0\}$, f(x) > g(x) 证明 8a 取 $\epsilon = \frac{A-B}{3}$

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \exists \delta_1 > 0, x \in O_{\delta_1}(x_0) \setminus \{x_0\}: |f(x) - A| < \frac{A - B}{3}$$
$$\Rightarrow f(x) > \frac{2A + B}{3}$$

$$\lim_{x \to x_0} g(x) = B \Leftrightarrow \exists \delta_2 > 0, x \in O_{\delta_2}(x_0) \setminus \{x_0\} : |g(x) - B| < \frac{A - B}{3}$$
$$\Rightarrow g(x) < \frac{A + 2B}{3}$$

$$f(x) > \frac{2A+B}{3} > \frac{A+2B}{3} > g(x)$$

证毕。(Return:以定义结束, $\varepsilon - \delta$ 语言)

定理 5e (闭区间上连续函数的零点存在定理) $f \in C_{[a,b]}, f(a) \cdot f(b) < 0 \Rightarrow \exists \xi \in (a,b): f(\xi) = 0$

证明 5e WLOG: $f(a) < 0, f(b) > 0, V = \{x | f(x) < 0, x \in [a, b]\} \neq \emptyset \Rightarrow \exists \xi = \sup V$ (确界存在定理[7a])

 $f \in C_{[a,b]} \Rightarrow \exists \delta_1 > 0, \forall x \in [a, a + \delta_1): f(x) < 0; \exists \delta_2 > 0, \forall x \in (b - \delta_2, b]: f(x) > 0$ $\Rightarrow \xi \subseteq [a + \delta_1, b - \delta_2] \subset (a, b)$

显然, $\lim_{n\to\infty}f(x_n)=f(\xi)\leq 0.$ 若 $f(\xi)<0$,由局部保序性[8a]得 $\exists \delta>0, x\in$

 $O_{\delta}(x_0)\setminus\{x_0\}: f(x)<0$ 这将与 $\xi=\sup V$ 矛盾! 故 $f(\xi)=0$ 。证明完毕。

引理 2d (同一函数原函数之间只能相差一个常数) $f \in C_{[a,b]}$ 在该区间上都有一个原函数,而且任一原函数都有下述形式:

$$\mathcal{F}(x) = \int_{a}^{x} f(t)dt + C, \ C \in \mathbb{R}$$

证明 2d 由可积函数有原函数定理[2c]可知,若G(x)是 f(x)的另一个原函数,则

$$(F - G)'(x) \equiv 0$$

式中

$$F(x) = \int_{a}^{x} f(t)dt$$

则根据导函数恒零为常数函数推论[3e],就会有

$$(F-G)(x) = C, C \in \mathbb{R}$$

证毕。

推论 3e (导函数恒零为常数函数推论) f是区间 X上的一个连续函数。 $f'(x) \equiv 0 \Rightarrow f(x) = Const.$

证明 3e 取 $\forall a, b \in X(a < b)$,由拉格朗日中值定理[4e],有

$$\frac{f(a) - f(b)}{a - b} = f'(\xi) = 0, \ \xi \in [a, b] \Rightarrow f(a) = f(b)$$

证毕。

引理 4e (拉格朗日中值定理) $f \in C_{[a,b]}$,在(a,b)可导,则

$$\exists \xi \in (a,b): f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

证明 4e 作辅助函数

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$
$$\varphi(a) = 0, \varphi(b) = 0$$

由罗尔中值定理[5f]可得,

$$\exists \xi \in (a, b): \varphi'(\xi) = 0 = f'(\xi) - \frac{f(b) - f(a)}{b - a}$$

证毕。

定理 5f (罗尔中值定理) $f \in C_{[a,b]}$,在(a,b)可导,f(a) = f(b), $\exists \xi \in (a,b): f'(\xi) = 0$

证明 5f 由最值定理[5d]可知,

$$\exists \xi, \eta \in [a, b]: f(\xi) = m = \inf f(x), f(\eta) = M = \sup f(x)$$

情形 1 M = m,此时此函数是常数函数,结论显然成立。

情形 2 M > m,这是不妨设 $M = f(\xi) > f(a) = f(b)$,此时 ξ 是f(x)的一个极值点,由费马引理[6e]有

$$f'(\xi) = 0$$

证毕。

引理 6e (费马引理)设 x_0 是f(x)的一个极值点,且在此处的导数存在,则 $f'^{(x_0)}=0$

证明 6e 不妨设 x_0 是f(x)的一个极大值点,有定义的情况下 $x \in O_\delta(x_0)$: $f(x) \le f(x_0)$

可导保证 $f'(x_0) = f'_+(x_0) = f'_-(x_0)$

而

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

$$f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

故 $f'(x_0) = 0$ (**序公理1**_<)。同理证极小值情况。(Return:以公理结束)

定理 1b (分部积分法) $u, v \in C_{[a,b]}$ 而且可微,则由分部积分公式成立:

$$\int_{a}^{b} u dv = u \cdot v|_{a}^{b} - \int_{a}^{b} v du$$

证明 1b 根据函数乘积的微分规则[2e],有

$$(u \cdot v)' = u'v + v'u$$

对此使用牛顿-莱布尼茨公式[1a]有

$$|u \cdot v|_a^b = \int_a^b v du + \int_a^b u dv$$

移项证毕。

定理 2e (函数乘积的微分规则) $u,v \in C_{[a,b]}$ 而且可微,则

$$(u \bullet v)' = u'v + v'u$$

证明 2e $(u \cdot v)(x + h) - (u \cdot v)(x) = (u(x + h) - u(x))v(x + h) + u(x)(v(x + h) - v(x)) = (u'(x)h + o(h))(v(x) + v'(x)h + o(h)) + u(x)(v'(x)h + o(h)) = (u'(x)v(x) + u(x)v'(x))h + o(h)$ 这里用到了微分的定义以及无穷小量的定义,都是由函数极限的定义决定的。证毕! (Return:以定义 函数极限结束)